Basic Principles of Tumor Immunotherapy

CME Disclosures

Craig L. Slingluff, Jr., MD

The following relationships exist related to this presentation:

IMMATICS BIOTECHNOLOGIES, Consultant, SAB member, Research Support funds,

GLAXO SMITH KLINE , Research Support, PI on funded clinical trial

POLYNOMA, Consultant, Advisory Board, Research Support funds,

3M, Clinical trial Research Support

MERCK, Clinical trial Research Support

UVA LICENSING AND VENTURE GROUP, royalty/licensing fees, inventor on peptides.

Experimental use of cancer vaccines, imiquimod, interferon-gamma.

To exist, tumors must evolve mechanisms to locally disable and/or evade the immune system.

The goal of immunotherapy, then, is to restore the capacity of the immune system to recognize and reject cancer.

T lymphocytes at the center of immune therapy

Cancer Cell

Killer T cell: (immune system cell)

Peter Jaret "Our Immune System: The Wars Within," *National Geographic* (June 1986).

Immunotypes in Metastatic Melanoma purple = CD31; blue = CD45; brown = S100

Erdag G, et al. Cancer Res 2012

Survival is associated with the ability of T cells to infiltrate metastases

Patient Survival by Immunotype (n = 147)

Time since surgery (months)

Erdag G, et al. Cancer Res 2012

Types of immunotherapy

Checkpoint blockade therapy

The goal of T cell checkpoint blockade is to make T cell "off-switches" inaccessible to tumor cells, thus restoring tumor-specific immunity.

CTLA-4, a negative regulator of T cell activity, limits the responsiveness of activated T cells

Anti-CTLA-4 induces regression of transplantable colon carcinoma

Durable improved survival with CTLA4 blockade in melanoma

Kaplan-Meier estimates of overall survival in patients treated with ipilimumab plus dacarbazine (DTIC) or placebo plus DTIC in phase III CA184-024 study. Symbols indicate censored observations. Red box highlights updated 5-year survival data

Maio M, et al. J Clin Oncol 2015

T cell checkpoint modulation

Summary significance of checkpoint blockade

Checkpoint blockade antibodies have no <u>direct</u> anticancer effect.

They only work by unleashing *pre-existing* antitumor immunity.

Thus, the success of checkpoint blockade (anti-CTLA4 and anti-PD-1) proves that spontaneous antitumor immunity exists and can be therapeutic.

However, the failure of checkpoint blockade antibodies in some patients highlights the need to induce antitumor immunity or to modulate other checkpoints.

Cancer Vaccines

The goal of therapeutic cancer vaccination is to increase the immunogenicity of tumor antigens which are poorly presented by the tumor in order to generate a high frequency of tumor-specific T cells.

Therapeutic cancer vaccines - composition

Prostate cancer vaccine

- Cancer vaccine FDA approved for hormonerefractory prostate cancer:
- Sipuleucel-T: PAP/GM-CSF/dendritic cells and T cells¹
- Integrated data from 2 randomized phase III trials

Shared and mutated antigens for T cells in human melanoma and other cancers

Targeting shared peptide antigens in melanoma

6 Class II-MHC Restricted Melanoma Peptides (6MHP)

Protein (residues)	Allele	Peptide Sequence
Turopingoo		(A)ONILLSNABLCBOED (Tonglian)
Tyrosinase 56-70	DR4	(A)QNILLSNAPLGPQFP (Topalian)
Tyrosinase 388-406	, DR15	FLLHHAFVDSIFEQWLQRHRP (Kobayashi)
MelanA 51-73	DR4	RNGYRALMDKSLHVGTQCALTRR (Zarour)
MAGE-3 281-295	DR11	TSYVKVLHHMVKISG (<u>Manici</u>)
MAGE-1-3, 6 ₁₂₁₋₁₃	₄ DR13	LLKYRAREPVTKAE (Chaux)
gp100 ₄₄₋₅₉ D	R1, DR4	WNRQLYPEWTEAQRLD (Halder/Li)

100 T-cell + Ab Survival probability (%) 80 response 60 p = 0.000140 20 neither Tc or Ab 0 2 8 10 4 Time (years) Number at risk Group: Tc + Ab 23 19 12 0 13 Group: Neither 0 Group: Tc or Ab 3 Ô ñ 7

Strong correlation between immune response and survival

Resected stage IV melanoma: promising overall survival

Advanced melanoma: 2PR, 2SD of 17 patients, durable 1-7 years

Reed, CCR 2015 Hu, Ann Surg 2015 Dillon, JITC 2014 Slingluff, CCR 2013 Slingluff, JCO 2008

Combinations with checkpoint blockade may enhance outcomes with vaccines

Clinical trials of combination immunotherapies with 6MHP vaccines for melanoma

CTLA4 blockade NCT02385669	 Expands T cell responses to tumor Ag Mediates effects initially through CD4+ T cells (Allison) Induces T cell infiltration of metastases
PD-1 blockade NCT02515227	 depends on T cell reactivity to tumor antigens can increase T cell infiltration of metastases
BRAFi/MEKi NCT02382549	 induce MHC and antigen expression (J Wargo) increase T cell infiltration

• 6MHP vaccines plus systemic therapy in advanced melanoma with biopsies of tumor and vaccine-draining nodes.

J Clin Oncol 2008; Dillon PM. <u>JITC</u> 2014; Hu, Y. <u>CII</u> 2014; Reed, C. Clin Ca Res 2015

Mutated neoantigen vaccines

A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells

Science May 2015

Beatriz M. Carreno,^{1*} Vincent Magrini,² Michelle Becker-Hapak,¹ Saghar Kaabinejadian,³ Jasreet Hundal,² Allegra A. Petti,² Amy Ly,² Wen-Rong Lie,⁴ William H. Hildebrand,³ Elaine R. Mardis,² Gerald P. Linette¹

Mutated neoantigens selected in silico for 3 patients with resected stage III melanoma

T cell responses to mutated peptides pulsed on dendritic cells

<u>Specificity for mutant peptide</u>: Vaccine-induced T-cells expanded from each patient recognize mutated peptide > wild-type peptide (8/9).

<u>Natural processing of epitope</u>: Vaccineinduced T-cells expanded from each patient recognize HLA-A2+ melanoma cells transfected with tandem minigene construct encoding mutated peptide, vs controls. (6/9).

DC vaccine + neoantigen peptides in melanoma patients: Summary

- Neoantigen peptides selected in silico for high binding:
 - May have differential expression among different metastases of the same patient
- Vaccination with these peptides + IL12⁺ DC have high rates of immunogenicity
 - Is safe (patients remain alive)
 - Induces durable T cell responses that can recognize naturallyprocessed antigen
 - Expands T cell repertoire
- Challenges:
 - T cell responses were demonstrated after 1 in vitro stimulation (not ex vivo)
 - Peptides must be selected for each patient
 - Antitumor activity not known

IN SITU VACCINATION: Making a vaccine of a patient's own tumor

Randomized phase III trial of Talimogene laherparepvec (T-vec, IMLYGIC) vs systemic GM-CSF

FDA Advisory meeting (April 29, 2015). Does talimogene laherparepvec have an overall favorable benefit-risk profile to support traditional approval for the treatment of injectable, regionally or distantly metastatic melanoma? Voted Yes: 22 to 1.

IMLYGIC Indicated for the Local Treatment of Unresectable Cutaneous, Subcutaneous and Nodal Lesions in Patients With Melanoma Recurrent After Initial Surgery - November 2015

Andtbacka RH. J Clin Oncol 2015; http://www.fda.gov/AdvisoryCommittees/Calendar/ucm433807.htm .

Adoptive T cell therapy

The goal of T cell adoptive transfer is to win the numbers game and overwhelm the tumor with a higher frequency of tumor-specific T cells than it is capable of suppressing.

Adoptive Cellular Therapy: Rehabilitating a patient's own T cells to destroy cancer

- Expansion of T cells outside the body, that target cancer antigens
 - Tumor infiltrating lymphocytes (TIL)
- Adding a missing gene to recognize a specific target on cancer
 - T-cell receptor for tumor antigens
 - Chimeric antigen receptor (CAR-T)
- Arm T cells with antibody
- Bispecific antibody-armed T-cell (BAT) immunotherapy

Copyright © 2006 Nature Publishing Group Nature Reviews | Immunology

Melanoma Regression with T cell therapy

TIL after lymphodepletion. Dudley, J Clin Oncol 2005

Durable benefit with adoptive T cell transfer of tumor-infiltrating lymphocytes.

Surgery Branch, NCI (SA Rosenberg)

Overall survival of patients receiving TILs with the chemotherapy preparative regimen alone (no TBI) or plus 2 or 12 Gy TBI

Rosenberg et al. Clinical Cancer Research 2011

Effective treatment of relapsed B cell ALL with CD19 CAR T cell therapy

CANCER

INSTITUTE

Maude S, Frey N, Shaw P, Aplenc R, Barrett D, Bunin N, Chew A, Gonzalez V, Zheng Z, Lacey S, et al. 2016. Chimeric antigen receptor T cells for sustained remissions in leukemia. The New England Journal of Medicine. 374(10): 988.

ACT: Successes and Future Directions

- TIL therapy:
 - 50-70% response; 25% durable survival melanoma
- CAR-T cells:
 - 90% response in ALL (acute lymphoblastic leukemia
 - CD19 CARs for: ALL, non-Hodgkin's lymphoma, and chronic lymphocytic leukemia (CLL),
- T-cell receptor-transduced T cells
 - Dramatic benefit in selected cancers
- BAT cells: promising clinical outcomes in a range of solid tumors
- Can they be effective in more patients by adding therapy that makes the tumors more receptive to infiltration by T cells (eg: PD-1 antibody)?

Effector Antibodies and ADC

The goal of effector antibodies is to utilize the exquisite sensitivity of antibodies to specifically target and kill tumor cells using mechanisms which are difficult to evade or suppress.

Effector antibodies and antibody-drug conjugates (ADCs)

Key ADC/antibody principles

- **Specificity:** The more tumor specific the target antigen is, the higher the agent can be dosed without limiting toxicity
- Internalization: The target tumor surface protein must internalize to deliver the toxin - it should do so frequently and to a suitable endosomal compartment.
- Stability: The toxin must remain inert and tethered to the antibody until it is delivered to its target cell.

SGN-70A in the clinic for NHL and RCC

CANCER

INSTITUTE

Jeffrey SC, Burke PJ, Lyon RP, Meyer DW, Sussman D, Anderson M, Hunter JH, Leiske CI, Miyamoto JB, Nocholas ND, et al. 2013. A potent anti-CD70 antibody-drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug Chem. 24(7): 1256-63.

Seeking combinations outside of T cell checkpoint immunotherapy

Radiation therapy: A potent adjuvant for tumor immunity

INSTITUTE

Radiotherapy synergizes with blockade of CTLA-4 and PD-1 to cure melanoma lung metastases

Victor CT, Rech A, Maity A, Rengan R, Pauken K, Stelekati E, Benci J, Xu B, Dada H, Odorizzi P, et al. 2015. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 520: 373-377.

UVA Clinical trials: investigator-initiated at UVA and in clinical trial networks

- Cancer vaccines
- Adoptive cell therapy
- Focused ultrasound ablation
- Checkpoint blockade combinations with IL-2 and other immune therapies
- Intratumoral therapies with checkpoint blockade and TLR agonists
- Personalized immune therapies

Lessons and Take-Home Messages

- Key Points and Lessons Learned
 - As a cancer evolves in a patient, there is a constant battle between the cancer and the patient's immune system
 - Different cancers have different weaknesses
 - Cancer immunotherapy has enabled new tools to rehabilitate a patient's immune system or to equip it to overcome a growing cancer
- Potential Impact on the Field
 - The future of cancer immunotherapy includes new combinations and new therapies that are tailored to a patient's own cancer and immune system and their response to each treatment.
 - Clinical trials offer options for patients now and promise to improve therapy for future patients.